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ABSTRACT. In this paper as a generalization of permuting tri-derivations
and permuting tri- f-derivations of a lattice, we introduce the notion of
Permuting tri-(f, g)-derivations of a lattice. If the function g is equal to
the function f then the permuting tri-(f, g)-derivation is the permuting
tri- f-derivation defined in [19]. Also if we choose the functions f and g the
identity functions both then the derivation we define coincides with the
derivation defined in [15].
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1. INTRODUCTION

The lattice algebra has an important role and has many applications in infor-
mation theory, information retrieval, information access controls and cryptanalysis.
For more information one can study [I} 2 4} 8, 9, 11}, 12} 16, 20].

Szdsz introduced the notion of lattice derivation and gave interesting results [17].
Also in [10] the author studied this lattice derivation. In [18] Xin et al. improved
derivation for a lattice and discussed some related properties. They gave some
equivalent conditions under which a derivation is isotone for lattices with a greatest
element, modular lattices and distributive lattices.

In [6] Ceven and Oztiirk gave a generalization of derivation on a lattice which
was defined in [I8]. Ceven in [5] introduced the symmetric bi derivations on lattices.
Ceven and Oztiirk [7] discussed some properties of symmetric bi-(c, 7)-derivations in
near-rings. The author investigated some related properties. He characterized the
distributive and modular lattices by the trace of symmetric bi derivations. Ozbal
and Firat in [13] introduced the notion of symmetric f-bi-derivation of a lattice.
They characterized the distributive lattice by symmetric f-bi-derivation.
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In [14] Oztiirk introduced the notion of permuting tri-derivations in rings and
proved some results. Also in [15] Oztiirk et al. introduced the permuting tri-
derivations in lattices. Yazarli and Oztiirk generalized the permuting tri-derivations
to permuting tri- f-derivations in [19]. In this paper as a generalization of [15] and
[19] we introduce the notion of permuting tri-(f, g)-derivations of a lattice. We give
illustrative example. We define the isotone permuting tri-(f, g)-derivation and get
some interesting results about isotoneness. We characterize the distributive and
isotone lattices by permuting tri-( f, g)-derivations.

2. PRELIMINARIES

Definition 2.1 ([3]). Let L be a nonempty set endowed with operations A and V.
If (L, A, V) satisfies the following conditions for all z,y,z € L
DHzAx=zx,zVe==c
2)zAy=yAz,zVy=yVza
B)xAy)yANz=zA(yAz),(eVy)Vz=2V(yVz)
4) (zAy)Ve=z, (zVy) Az ==z
then L is called a lattice.

Definition 2.2 ([3]). A lattice L is distributive if the identity (5) or (6) holds.
B)zA(yVz)=(zAy)V(zAz)
6) zvV(ynz)=(@Vy A(zV2)

Definition 2.3 ([3]). Let (L,A,V) be a lattice. A binary relation < is defined by
r<yifandonlyifr Ay=zand zVy=y.

Lemma 2.4 ([18]). Let (L,A,V) be a lattice. Define the binary relation < as the
Definition [2.3. Then (L,<) is a poset and for any xz,y € L, x Ay is the g.l.b. of
{z,y} and xV y is the L.u.b. of {x,y}.

Definition 2.5 ([I5]). Let L be a lattice. A mapping D : L X
called permuting if it satisfies the following conditions D (z,y, 2)
D (y,z,z) =D (y,z,2) = D (z,2,y) = D (z,y,z) for all z,y,z € L.

IIh

x L — L is
D(z,2,y) =

Definition 2.6 ([I5]). A mapping d : L — L defined by d(x) = D (z, x,x) is called
the trace of D where D is a permuting mapping.

Definition 2.7 ([15]). Let L be a lattice and D be a permuting tri-derivation on
L. We call D joinitive if it satisfies

D(zVw,y,z)=D(z,y,z) VD(w,y, z)
for all z,y,z,w € L.

Definition 2.8 ([19]). Let L be a lattice. A permuting mapping D : LXLXxL — L
is called permuting tri- f-derivation if there exists a function f : L — L such that

D(z Aw,y, 2) = (D(z,y,2) A f (w)) V (f (x) A D(w,y, 2))

for all z,y,z,w € L.
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3. PERMUTING TRI-(f, g)-DERIVATIONS OF LATTICES

Definition 3.1. Let L be a lattice and D : L x L x L. — L be a permuting mapping.

D is called permuting tri-(f, g)-derivation of L if there exist functions f,g: L — L
such that

(3.1) D(z Aw,y,z) = (D(z,y,2) A f (w)) V(g (z) A D(w,y, 2))
for all x,y, z,w € L.
Obviously a permuting tri-(f, g)-derivation D on L satisfies the relations
D(z,y Aw,z) = (D(z,y,2) A f (w)) V(g (y) A D(x,w, 2))
and

D(xuva/\w) = (D(x,y,z)/\f(w))\/(g(z)/\D(x,y,w)).

For special case, if we get the function g equal to the function f then our derivation
coincides with the permuting tri- f-derivation in [19]. Also if we get the functions f
and g the identity functions then our derivation is the derivation defined in [15].

Example 3.2. Let us take the lattice 13 which is given by the following diagram.

(1,1,1)
(1,1,0) (0,1,1)
(1,0,0) (0,0,1)
(0,0,0)
Define a function D on L by
17 (I7y7 Z) = (07 07 0)
D(J%y,z) = 0, (x,y,z) = (0707 1) (0, 170)a (07 1, 1)7 (170’0)
07 ($,y,2) = (17071) (17170)7(17171)

then D is not a permuting tri-derivation of L since

1 = D(0,0,0)

= D(0A0,0,0)

# (D (0,0,0)A0)V (0A D(0,0,0))

= 0.
If we define functions f and g on L respectively f(0) = f(1) = 1 and ¢ (0) = 0,
g(1) = 1, then f # g and D defined above is a permuting tri-(f, g)-derivation of

L. Also if we get f(0) = g(0) =1 and f(1) = ¢g(1) =1 then f = g and D is a
permuting tri- f-derivation of L.
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Proposition 3.3. Let L be a lattice and d be the trace of permuting tri-(f,g)-
derivation D on L. Then

d(x) < (f (x) Vg (2))
for all x € L.
Proof. Since x Az = z for all x € L and from the definition of trace we have
d(z) = D(z,z,2) = D(z Az,z,x) = (D(x,x,2) A f(2)) V (9 () AN D(z,z,z).
Since D(z,z,xz) A f(z) < f(z) and D(z,z,x) A g(z) < g(z), we get that d(x) <
flx) Vg (z). 0
Proposition 3.4. Let L be a lattice and D be a permuting tri-(f, g)-derivation on L.

Then D(z,y,z) < f (z)Vg (x), D(z,y,2) < f(y)Vg(y) and D(z,y,z) < f (2)Vg(2)
forall z,y,z € L.

Proof. Since z A x = z for all x € L then we have
D(x,y,z) = D(x ANw,y,2) = (D(x,y,2) A f(2)) V(g (x) A D(z,y,2).
Since D(x,y,2) A f (z) < f(x) and D(z,y,2) A g(x) < g(x), we get
D(x,y,2) < f(2) V g().
Similarly D(z,y,2) < f(y) V g(y) and D(z,y,2) < f(2) Vg (2). O

Proposition 3.5. Let D be a permuting tri-(f, g)-derivation on a lattice L. If L
has a least element 0, such that f (0) =0 and g (0) =0, then D (0,y,z) = 0.

Proof. From Proposition [3.3| we have D(x,y,z) < (f () V g (z)) for all z,y,z € L.

Since 0 is the least element of the lattice then 0 < D(0,y,z) < (f(0) vV ¢g(0)) = 0.
Then we say that D(0,y,z) = 0. O

Proposition 3.6. Let L be a lattice with a greatest element 1 and D be a permuting
tri-(f, g)-derivation on L such that f (1) = g (1) = 1. Then the following are valid:

(i) If f (z) < D(1,y,2) and g (z) < D(1,y, 2) then D(z,y,2) = (f (z) V g (x)).
(ii) If f (z) > D(1,y,2) and g (z) > D(1,y,2) then D(z,y,z) > D(1,y, 2).

Proof. (i) Since

D(z,y,z) = D(xAl,y,z2)
(D(z,y,2) A f (1) V(g9(2z) AD(1,y,2))
= D(z,y,2) Vg (x)

then we have

(32) g9(x) < D(z,y,2).
Similarly since x A 1 =1 A x then we can write
D(z,y,2) = D(Aw,y,z)

= (D,y,2)Af(x)V(9(1)AD(,y,2))
= f(x)V D(x,y,z2).
Again we have

(3-3) f(z) < D(z,y, 2).
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From (3.2) and (3.3) we have
(f () Vg (2)) < D(x,y,2).

From Proposition 3.3l we have D(z,y,z) < (f (z) V g (z)). Finally we have
(f(@) Vg (z)) <D(x,y,2) < (f(x) Vg (2),
which completes the proof.
(ii) Since
D(z,y,2) = D(zAl,y,z)
(D(,y,2) A f (1)) V(g (x) AD(1,y,2))
D(x,y,2) vV D(1,y, 2)

then we have
D(z,y,z) > D(1,y, 2).
O

Theorem 3.7. Let L be a distributive lattice and D be a permuting tri-(f,g)-
derivation on L with the trace d. Then

d(z Ny) = (dx) A f(y) V(g (@) Ad(y)) V(g (@) A f(y) AD(z,z,y) V D(x,y,y)]}
for all x,y € L.

Proof. From the definition of the trace we have
dlx ANy)=D(x ANy,z Ny, z \y)
=Dz, z Ny, zNy) AN f(y) v (9(@) AD(y,z ANy, z Ay))
=D, z,z ny) A f(Y) V(g (@) AD(z,y,z Ay)) A S ()}
Vg (@) A(D(y,z,x Ay) A f () V(g (@) AD(y,y,z Ay))l}
={(d(@) A f(y) V (g(x) A D(z,2,y) A f(y) V (9(x) A D(@,y,y) A f(y))}
VA{(g(z) nd(y)) v (g(x) A D(y,z, ) A f(y) V (9(z) A D(y,z,y) A fy)}
= (dx) A f W)V (g () Ady) V(g @) A fw)A(D(,y,y) VD, 2,y))}.
This completes the proof. g

Corollary 3.8. Let L be a distributive lattice and D be a permuting tri-(f,g)-
derivation on L with the trace d. Then,

() (g @) A W) AD(@,z,y) <dlzAy), (9(@)AfY)AD@yy) <dzAy).
(i) g (z) Ad(y) < d(zAy).
(iif) d(z) A f(y) < d(z Ay).

Proof. (i), (ii) and (iil) are easily seen from the theorem above. O
Corollary 3.9. Let L be a distributive lattice and 1 be the greatest element of L.
For special cases (g (z) A f (1)) A D(z,z,1) < d(x A1) = d(x) and g(x) Ad(1) <
d(x A1) =d(x) for all z € L.

Corollary 3.10. Let L be a distributive lattice, D be a permuting tri-(f, g)-derivation
on L with the trace d and 1 be the greatest element of L.Then

(i) g(z) = d(1) = d(x) = d(1).
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(i) g(z) <d(1) and f (z) < g(x) for allz € L = g(z) = d(z).

Definition 3.11. Let L be a lattice and D be a permuting tri-(f, g)-derivation on
L with the trace d.

(i) If <y implies d(x) < d(y) then d is called an trace isotone mapping.
(ii) If d is one to one, d is called a trace monomorphic mapping.
(iii) If d is onto then d is called an trace epic mapping,.

Definition 3.12. Let L be a lattice and D be a permuting tri-(f, g)-derivation on
L, if x < y implies D(z,w,2) < D(y,w, z) then D is called an isotone permuting
tri-(f, g)-derivation on L

Proposition 3.13. Let L be a lattice and d be the trace of permuting tri-(f,g)-
derivation D on L Then the following conditions are equivalent;

(i) d is an isotone mapping.
(ii) dzVdy <d(zVy).

Proof. (1)=(2) Suppose that d is an isotone mapping. We know that < 2V y and
y < x Vy. Since d is isotone then d(x) < d(xVy) and d (y) < d(x Vy). Hence we
get d(z) Vd(y) < d(zVy).

(2)=(1) Suppose that d (z) Vd(y) < d(zVy) and z < y. Then we get d(z) <
d(x)Vvd(y) <d(zxVy)=d(y). This means that d is an isotone mapping. d

Theorem 3.14. Let L be a lattice with greatest element 1 and D be an isotone
permuting tri-(f, g)-derivation on L. Let f(1) = g(1) = 1 and either f (x) > g ()
or f(x) <g(x) for allz € L. Then

D(z,y,z) = (f (x) Vg (x)) ND(1,y,2)
forall x,y,z € L.

Proof. Suppose that D is an isotone permuting tri-(f, g)-derivation on L. Then
D (z,y,z) < D(1,y,2) for all z,y,z € L. Now suppose that f (z) > g (z) for x € L.
Then we have D (z,y,2) < f(x)V g(z) = f(z). From this we get D (z,y,2) <
f@)AnD(l,y,z). Also

D(x,y,z) =

D((zV1)Azy,z)

[(D(@V1),y,2) A f(@)]VIg(zV1)AD(,y,z)
[D(1,y,2) A f(x)]V [g(1) A D(,y, 2)]

= [D(Ly,z) A f(@)]V[LAD(,y,2)]

[D(L,y,2) A f(x)]V D(x,y, 2)

= D(Ly,2)Af(x)

Since f () V g (z) = f (x) then we get

D(a:,y,z) = (f (I) \ g(x)) A D(layaz)'
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Now suppose that f(x) < g(z) for € L. Then similarly we have D (z,y,z) <
f(x)Vg(z)=g(x). From this we get D (z,y,2) < g(z) A D (1,y,z). Also
D(z,y,2) = D(@A(zV1),y,z)

[(D(z,y,2) A f(z V1] Vg (2) AD((xV1),y,2)]
[D(z,y,2) A f(D]V [g (2) AD(1,y,2)]

= [D(z,y,2) A1V [g(z) A D(1,y, 2)]

= D(z,y,2) Vg (z) AD(1,y,2)]

g9(z) AD(1,y,2)
Since f (x) V g (x) = g (x) then we get
D(z,y,2z) = (f(x) Vg (z)) AD(1,y,2).

This completes the proof. O

4. CONCLUSION

In this paper as a generalization of permuting tri-derivation and permuting tri-
f-derivation of a lattice we introduced the notion of permuting tri-(f, g)-derivation
of a lattice. We defined the isotone permuting tri-(f, g)-derivation and got some
interesting results about isotoneness. We characterized the distributive and isotone
lattices by permuting tri-(f, g)-derivation. If the function g is equal to the function f
then the permuting tri-( f, g)-derivation is the permuting tri-( f, g)-derivation defined
n [19]. Also if we choose the functions f and g the identity functions both, then the
derivation we define coincides with the derivation defined in [15].
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