Annals of Fuzzy Mathematics and Informatics Volume 1, No. 2, (April 2011), pp. 189- 196 ISSN 2093-9310 http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Permuting tri-(f, g)-derivations on lattices

Mustafa Asci, Osman Kecilioglu, Sahin Ceran

Received 2 November 2010; Revised 9 December 2010; Accepted 27 December 2010

ABSTRACT. In this paper as a generalization of permuting tri-derivations and permuting tri-f-derivations of a lattice, we introduce the notion of Permuting tri-(f, g)-derivations of a lattice. If the function g is equal to the function f then the permuting tri-(f, g)-derivation is the permuting tri-f-derivation defined in [19]. Also if we choose the functions f and g the identity functions both then the derivation we define coincides with the derivation defined in [15].

2010 AMS Classification: 06B35, 06B99, 16B70

Keywords: Lattice, Derivation, Permuting tri-(f, g)-derivation.

Corresponding Author: Mustafa Asci (mustafa.asci@yahoo.com)

1. INTRODUCTION

The lattice algebra has an important role and has many applications in information theory, information retrieval, information access controls and cryptanalysis. For more information one can study [1, 2, 4, 8, 9, 11, 12, 16, 20].

Szász introduced the notion of lattice derivation and gave interesting results [17]. Also in [10] the author studied this lattice derivation. In [18] Xin et al. improved derivation for a lattice and discussed some related properties. They gave some equivalent conditions under which a derivation is isotone for lattices with a greatest element, modular lattices and distributive lattices.

In [6] Çeven and Öztürk gave a generalization of derivation on a lattice which was defined in [18]. Çeven in [5] introduced the symmetric bi derivations on lattices. Çeven and Öztürk [7] discussed some properties of symmetric bi- (σ, τ) -derivations in near-rings. The author investigated some related properties. He characterized the distributive and modular lattices by the trace of symmetric bi derivations. Ozbal and Firat in [13] introduced the notion of symmetric *f*-bi-derivation of a lattice. They characterized the distributive lattice by symmetric *f*-bi-derivation. In [14] Öztürk introduced the notion of permuting tri-derivations in rings and proved some results. Also in [15] Öztürk et al. introduced the permuting triderivations in lattices. Yazarli and Öztürk generalized the permuting tri-derivations to permuting tri-f-derivations in [19]. In this paper as a generalization of [15] and [19] we introduce the notion of permuting tri-(f, g)-derivations of a lattice. We give illustrative example. We define the isotone permuting tri-(f, g)-derivation and get some interesting results about isotoneness. We characterize the distributive and isotone lattices by permuting tri-(f, g)-derivations.

2. Preliminaries

Definition 2.1 ([3]). Let L be a nonempty set endowed with operations \land and \lor . If (L, \land, \lor) satisfies the following conditions for all $x, y, z \in L$

(1) $x \wedge x = x, x \vee x = x$ (2) $x \wedge y = y \wedge x, x \vee y = y \vee x$ (3) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z)$ (4) $(x \wedge y) \vee x = x, (x \vee y) \wedge x = x$ then L is called a lattice.

Definition 2.2 ([3]). A lattice *L* is distributive if the identity (5) or (6) holds. (5) $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (6) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

Definition 2.3 ([3]). Let (L, \wedge, \vee) be a lattice. A binary relation \leq is defined by $x \leq y$ if and only if $x \wedge y = x$ and $x \vee y = y$.

Lemma 2.4 ([18]). Let (L, \wedge, \vee) be a lattice. Define the binary relation \leq as the Definition 2.3. Then (L, \leq) is a poset and for any $x, y \in L$, $x \wedge y$ is the g.l.b. of $\{x, y\}$ and $x \vee y$ is the l.u.b. of $\{x, y\}$.

Definition 2.5 ([15]). Let *L* be a lattice. A mapping $D : L \times L \times L \to L$ is called permuting if it satisfies the following conditions D(x, y, z) = D(x, z, y) = D(y, x, z) = D(y, z, x) = D(z, x, y) = D(z, y, x) for all $x, y, z \in L$.

Definition 2.6 ([15]). A mapping $d: L \to L$ defined by d(x) = D(x, x, x) is called the trace of D where D is a permuting mapping.

Definition 2.7 ([15]). Let L be a lattice and D be a permuting tri-derivation on L. We call D joinitive if it satisfies

$$D(x \lor w, y, z) = D(x, y, z) \lor D(w, y, z)$$

for all $x, y, z, w \in L$.

Definition 2.8 ([19]). Let L be a lattice. A permuting mapping $D: L \times L \times L \to L$ is called permuting tri-f-derivation if there exists a function $f: L \to L$ such that

 $D(x \land w, y, z) = (D(x, y, z) \land f(w)) \lor (f(x) \land D(w, y, z))$

for all $x, y, z, w \in L$.

3. Permuting tri-(f,g)-derivations of lattices

Definition 3.1. Let *L* be a lattice and $D: L \times L \times L \to L$ be a permuting mapping. *D* is called permuting tri-(f,g)-derivation of *L* if there exist functions $f,g: L \to L$ such that

$$(3.1) D(x \land w, y, z) = (D(x, y, z) \land f(w)) \lor (g(x) \land D(w, y, z))$$

for all $x, y, z, w \in L$.

Obviously a permuting tri-(f, g)-derivation D on L satisfies the relations

$$D(x, y \land w, z) = (D(x, y, z) \land f(w)) \lor (g(y) \land D(x, w, z))$$

and

$$D(x, y, z \land w) = (D(x, y, z) \land f(w)) \lor (g(z) \land D(x, y, w)).$$

For special case, if we get the function g equal to the function f then our derivation coincides with the permuting tri-f-derivation in [19]. Also if we get the functions f and g the identity functions then our derivation is the derivation defined in [15].

Example 3.2. Let us take the lattice 1^3 which is given by the following diagram.

Define a function D on L by

$$D(x,y,z) = \begin{cases} 1, & (x,y,z) = & (0,0,0) \\ 0, & (x,y,z) = & (0,0,1), (0,1,0), (0,1,1), (1,0,0) \\ 0, & (x,y,z) = & (1,0,1), (1,1,0), (1,1,1) \end{cases}$$

then D is not a permuting tri-derivation of L since

$$1 = D(0, 0, 0)$$

= D(0 \lapha 0, 0, 0)
\neq (D(0, 0, 0) \lapha 0) \lapha (0 \lapha D(0, 0, 0))
= 0.

If we define functions f and g on L respectively f(0) = f(1) = 1 and g(0) = 0, g(1) = 1, then $f \neq g$ and D defined above is a permuting tri-(f,g)-derivation of L. Also if we get f(0) = g(0) = 1 and f(1) = g(1) = 1 then f = g and D is a permuting tri-f-derivation of L.

Proposition 3.3. Let L be a lattice and d be the trace of permuting tri-(f,g)-derivation D on L. Then

$$d(x) \le (f(x) \lor g(x))$$

for all $x \in L$.

Proof. Since $x \wedge x = x$ for all $x \in L$ and from the definition of trace we have

$$d(x) = D(x, x, x) = D(x \land x, x, x) = (D(x, x, x) \land f(x)) \lor (g(x) \land D(x, x, x)).$$

Since $D(x, x, x) \wedge f(x) \leq f(x)$ and $D(x, x, x) \wedge g(x) \leq g(x)$, we get that $d(x) \leq f(x) \vee g(x)$.

Proposition 3.4. Let L be a lattice and D be a permuting tri-(f,g)-derivation on L. Then $D(x, y, z) \leq f(x) \lor g(x)$, $D(x, y, z) \leq f(y) \lor g(y)$ and $D(x, y, z) \leq f(z) \lor g(z)$ for all $x, y, z \in L$.

Proof. Since $x \wedge x = x$ for all $x \in L$ then we have

$$D(x,y,z) = D(x \wedge x, y, z) = (D(x,y,z) \wedge f(x)) \vee (g(x) \wedge D(x,y,z)).$$

Since $D(x, y, z) \wedge f(x) \leq f(x)$ and $D(x, y, z) \wedge g(x) \leq g(x)$, we get

$$D(x, y, z) \le f(x) \lor g(x)$$

Similarly
$$D(x, y, z) \le f(y) \lor g(y)$$
 and $D(x, y, z) \le f(z) \lor g(z)$.

Proposition 3.5. Let D be a permuting tri-(f, g)-derivation on a lattice L. If L has a least element 0, such that f(0) = 0 and g(0) = 0, then D(0, y, z) = 0.

Proof. From Proposition 3.3 we have $D(x, y, z) \leq (f(x) \lor g(x))$ for all $x, y, z \in L$. Since 0 is the least element of the lattice then $0 \leq D(0, y, z) \leq (f(0) \lor g(0)) = 0$. Then we say that D(0, y, z) = 0.

Proposition 3.6. Let L be a lattice with a greatest element 1 and D be a permuting tri-(f,g)-derivation on L such that f(1) = g(1) = 1. Then the following are valid:

(i) If $f(x) \le D(1, y, z)$ and $g(x) \le D(1, y, z)$ then $D(x, y, z) = (f(x) \lor g(x))$. (ii) If $f(x) \ge D(1, y, z)$ and $g(x) \ge D(1, y, z)$ then $D(x, y, z) \ge D(1, y, z)$.

Proof. (i) Since

$$D(x, y, z) = D(x \land 1, y, z)$$

= $(D(x, y, z) \land f(1)) \lor (g(x) \land D(1, y, z))$
= $D(x, y, z) \lor g(x)$

then we have

(3.2)

$$(x) \le D(x, y, z).$$

q

Similarly since $x \wedge 1 = 1 \wedge x$ then we can write

$$D(x, y, z) = D(1 \land x, y, z)$$

= $(D(1, y, z) \land f(x)) \lor (g(1) \land D(x, y, z))$
= $f(x) \lor D(x, y, z).$

Again we have

(3.3)
$$f(x) \le D(x, y, z).$$

192

From (3.2) and (3.3) we have

 $(f(x) \lor g(x)) \le D(x, y, z).$

From Proposition 3.3 we have $D(x, y, z) \leq (f(x) \lor g(x))$. Finally we have

 $\left(f\left(x\right)\vee g\left(x\right)\right)\leq D(x,y,z)\leq \left(f\left(x\right)\vee g\left(x\right)\right),$

which completes the proof.

(ii) Since

$$\begin{array}{lll} D(x,y,z) &=& D(x \wedge 1,y,z) \\ &=& (D(x,y,z) \wedge f\left(1\right)) \vee (g\left(x\right) \wedge D(1,y,z)) \\ &=& D(x,y,z) \vee D(1,y,z) \end{array}$$

then we have

$$D(x, y, z) \ge D(1, y, z).$$

Theorem 3.7. Let L be a distributive lattice and D be a permuting tri-(f,g)-derivation on L with the trace d. Then

 $d(x \wedge y) = (d(x) \wedge f(y)) \vee (g(x) \wedge d(y)) \vee \{(g(x) \wedge f(y)) \wedge [D(x, x, y) \vee D(x, y, y)]\}$ for all $x, y \in L$.

Proof. From the definition of the trace we have

$$\begin{aligned} d(x \wedge y) &= D(x \wedge y, x \wedge y, x \wedge y) \\ &= (D(x, x \wedge y, x \wedge y) \wedge f(y)) \vee (g(x) \wedge D(y, x \wedge y, x \wedge y)) \\ &= \{ [(D(x, x, x \wedge y) \wedge f(y)) \vee (g(x) \wedge D(x, y, x \wedge y))] \wedge f(y) \} \\ &\quad \vee \{ g(x) \wedge [(D(y, x, x \wedge y) \wedge f(y)) \vee (g(x) \wedge D(y, y, x \wedge y))] \} \\ &= \{ (d(x) \wedge f(y)) \vee (g(x) \wedge D(x, x, y) \wedge f(y)) \vee (g(x) \wedge D(x, y, y) \wedge f(y)) \} \\ &\quad \vee \{ (g(x) \wedge d(y)) \vee (g(x) \wedge D(y, x, x) \wedge f(y)) \vee (g(x) \wedge D(y, x, y) \wedge f(y)) \} \\ &= (d(x) \wedge f(y)) \vee (g(x) \wedge d(y)) \vee \{ (g(x) \wedge f(y)) \wedge ((D(x, y, y) \vee D(x, x, y)) \} . \end{aligned}$$

This completes the proof.

Corollary 3.8. Let L be a distributive lattice and D be a permuting tri-(f,g)-derivation on L with the trace d. Then,

(i) $(g(x) \wedge f(y)) \wedge D(x, x, y) \leq d(x \wedge y), (g(x) \wedge f(y)) \wedge D(x, y, y) \leq d(x \wedge y).$

- (ii) $g(x) \wedge d(y) \le d(x \wedge y)$.
- (iii) $d(x) \wedge f(y) \le d(x \wedge y)$.

Proof. (i), (ii) and (iii) are easily seen from the theorem above.

Corollary 3.9. Let L be a distributive lattice and 1 be the greatest element of L. For special cases $(g(x) \wedge f(1)) \wedge D(x, x, 1) \leq d(x \wedge 1) = d(x)$ and $g(x) \wedge d(1) \leq d(x \wedge 1) = d(x)$ for all $x \in L$.

Corollary 3.10. Let L be a distributive lattice, D be a permuting tri-(f,g)-derivation on L with the trace d and 1 be the greatest element of L. Then

(i) $g(x) \ge d(1) \Rightarrow d(x) \ge d(1)$.

(ii) $g(x) \le d(1)$ and $f(x) \le g(x)$ for all $x \in L \Rightarrow g(x) = d(x)$.

Definition 3.11. Let L be a lattice and D be a permuting tri-(f, g)-derivation on L with the trace d.

- (i) If $x \leq y$ implies $d(x) \leq d(y)$ then d is called an trace isotone mapping.
- (ii) If d is one to one, d is called a trace monomorphic mapping.
- (iii) If d is onto then d is called an trace epic mapping.

Definition 3.12. Let L be a lattice and D be a permuting tri-(f, g)-derivation on L, if $x \leq y$ implies $D(x, w, z) \leq D(y, w, z)$ then D is called an isotone permuting tri-(f, g)-derivation on L

Proposition 3.13. Let L be a lattice and d be the trace of permuting tri-(f,g)-derivation D on L Then the following conditions are equivalent;

- (i) d is an isotone mapping.
- (ii) $dx \lor dy \le d(x \lor y)$.

Proof. (1) \Rightarrow (2) Suppose that d is an isotone mapping. We know that $x \leq x \lor y$ and $y \leq x \lor y$. Since d is isotone then $d(x) \leq d(x \lor y)$ and $d(y) \leq d(x \lor y)$. Hence we get $d(x) \lor d(y) \leq d(x \lor y)$.

 $(2) \Rightarrow (1)$ Suppose that $d(x) \lor d(y) \le d(x \lor y)$ and $x \le y$. Then we get $d(x) \le d(x) \lor d(y) \le d(x \lor y) = d(y)$. This means that d is an isotone mapping. \Box

Theorem 3.14. Let L be a lattice with greatest element 1 and D be an isotone permuting tri-(f,g)-derivation on L. Let f(1) = g(1) = 1 and either $f(x) \ge g(x)$ or $f(x) \le g(x)$ for all $x \in L$. Then

$$D(x, y, z) = (f(x) \lor g(x)) \land D(1, y, z)$$

for all $x, y, z \in L$.

Proof. Suppose that D is an isotone permuting tri-(f, g)-derivation on L. Then $D(x, y, z) \leq D(1, y, z)$ for all $x, y, z \in L$. Now suppose that $f(x) \geq g(x)$ for $x \in L$. Then we have $D(x, y, z) \leq f(x) \lor g(x) = f(x)$. From this we get $D(x, y, z) \leq f(x) \land D(1, y, z)$. Also

$$D(x, y, z) = D((x \lor 1) \land x, y, z)$$

= $[(D(x \lor 1), y, z) \land f(x)] \lor [g(x \lor 1) \land D(x, y, z)]$
= $[D(1, y, z) \land f(x)] \lor [g(1) \land D(x, y, z)]$
= $[D(1, y, z) \land f(x)] \lor [1 \land D(x, y, z)]$
= $[D(1, y, z) \land f(x)] \lor D(x, y, z)$
= $D(1, y, z) \land f(x)$

Since $f(x) \lor g(x) = f(x)$ then we get

$$D(x, y, z) = (f(x) \lor g(x)) \land D(1, y, z).$$
194

Now suppose that $f(x) \leq g(x)$ for $x \in L$. Then similarly we have $D(x, y, z) \leq f(x) \vee g(x) = g(x)$. From this we get $D(x, y, z) \leq g(x) \wedge D(1, y, z)$. Also

$$D(x, y, z) = D(x \land (x \lor 1), y, z)$$

= $[(D(x, y, z) \land f(x \lor 1)] \lor [g(x) \land D((x \lor 1), y, z)]$
= $[D(x, y, z) \land f(1)] \lor [g(x) \land D(1, y, z)]$
= $[D(x, y, z) \land 1] \lor [g(x) \land D(1, y, z)]$
= $D(x, y, z) \lor [g(x) \land D(1, y, z)]$
= $g(x) \land D(1, y, z)$

Since $f(x) \lor g(x) = g(x)$ then we get

$$D(x, y, z) = (f(x) \lor g(x)) \land D(1, y, z).$$

This completes the proof.

4. CONCLUSION

In this paper as a generalization of permuting tri-derivation and permuting trif-derivation of a lattice we introduced the notion of permuting tri-(f, g)-derivation of a lattice. We defined the isotone permuting tri-(f, g)-derivation and got some interesting results about isotoneness. We characterized the distributive and isotone lattices by permuting tri-(f, g)-derivation. If the function g is equal to the function fthen the permuting tri-(f, g)-derivation is the permuting tri-(f, g)-derivation defined in [19]. Also if we choose the functions f and g the identity functions both, then the derivation we define coincides with the derivation defined in [15].

Acknowledgements. The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

- R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Mo., 1974.
- [2] A. J. Bell, The co-information lattice, 4th Int. Symposium on Independent ComponentvAnalysis and Blind Signal Seperation (ICA2003) Nara, Japan (2003) 921–926.
- [3] G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
- [4] C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, International Journal of Human-Computers Studies 45 (1996) 553–578.
- [5] Y. Çeven, Symmetric bi derivations of lattices, Quaestiones Mathematicae, 32 (2009) 1–5.
- [6] Y. Çeven and M. A. Öztürk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008) 701–707.
- [7] Y. Çeven and M. A. Öztürk, Some properties of symmetric bi-(σ, τ)-derivations in near-rings, Commun. Korean Math. Soc. 22 (2007) 487–491.
- [8] C. Degang, Z. Wenxiu, D. Yeung and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci. 176 (2006) 1829–1848.
- [9] G. Durfee, Cryptanalysis of RSA using algebraic and lattice methods, A dissertation submitted to the department of computer sciences and the committe on graduate studies of Stanford University (2002) 1–114.
- [10] L. Ferrari, On derivations of lattices, Pure Math. Appl. 12 (2001) 365–382.
- [11] A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006) 3472–3489.

- [12] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004) 167–176.
- [13] S. A. Ozbal and A. Firat, Symmetric *f*-bi-derivations of lattices, Ars Combin. 97 (2010) 471–477.
- [14] M. A. Öztürk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J. 15 (1999) 177–190.
- [15] M. A. Oztürk, H. Yazarlıand K. H. Kim, Permuting tri-derivations in lattices, Quaest. Math. 32 (2009) 415–425.
- [16] R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls, Proceedings of the 4th Europan Symposium on Research in Computer Security, Rome, Italy, 1996, 65–79.
- [17] G. Szász, Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975) 149–154.
- [18] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008) 307–316.
- [19] H. Yazarhand M. A. Oztürk, Permuting tri-f-derivations in lattices, Commun. Korean Math. Soc. (in press).
- [20] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 2005:11 (2005) 1675–1684.

<u>MUSTAFA ASCI</u> (mustafa.asci@yahoo.com) – Pamukkale University Science and Arts Faculty Department of Mathematics, Denizli, TURKEY

<u>OSMAN KECILIOGLU</u> (okecilioglu@yahoo.com) – Kirikkale University Science and Arts Faculty Department of Mathematics, Kirikkale, TURKEY

<u>SAHIN CERAN</u> (sceran@pau.edu.tr) – Pamukkale University Science and Arts Faculty Department of Mathematics, Denizli, TURKEY